Answer: 150 kPa
Explanation:
Given that,
Original volume of gas V1 = 30L
Original pressure of gas P1 = 105 kPa
New pressure of gas P2 = ?
New volume of gas V2 = 21L
Since pressure and volume are given while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
105 kPa x 30L = P2 x 21L
3150 kPa L = P2 x 21L
P2 = 3150 kPa L / 21 L
P2 = 150 kPa
Thus, 150 kPa of pressure is required to compress the gas
Answer: <span>A reaction progress curve has three peaks and two valleys between the peaks. This curve describes a reaction mechanism that involves
<u>three elementary reactions</u>.
Explanation: I have drawn the progress curve with three peaks and two valleys. In fact the peaks shows higher energy and valleys show lower energies. So, Let suppose we react
A and
B. This reaction between A and B results in the formation of
C. In this reaction the energies of A and B are less, and during the progress of reaction they cross a transition state of higher energy and forms product C with lower energy which is present at lower valley. This was first reaction. Other two reactions will be followed by conversion of C to
D and conversion of D into
E.</span>
Atomic number is less than 11
You did not include the list but F is fluorine. The first halogen.
So, you can expect that the other members of the same group (halogens, column 17 of the periodic table) exhibit similar chemical behavior (reactivity).
So, I am sure your list contains one or more of theses elements: Cl (chlorine), Br (bromine), and I (iodine).
All of them you can expect to also be reactive non metal.