Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
Answer:
See explanation
Explanation:
Let us recall that a negative ion is formed by addition of electrons to an atom. When electrons are added to the atom, greater interelectronic repulsion increases the size of the Te^2− hence it is greater in size than Te atom. Therefore, the ionic radius of Te^2− is greater than the atomic radius of Te.
In the second question, oxygen is positioned so far to the right because it has a far smaller nuclear charge compared to Te. Hence in the PES spectrum, the 1s sublevel of oxygen lies far to the right of that of Te.
Answer: I believe it is critical mass
Explanation:
- By changing three atom bond angle , we can change molecular polarity. if bond angle is 120° and all atom has same electronegativity, the resultant polarity ( dipole moment ) become zero. we can change bond anngle either less than or greater than 120°, but not exactly 120
- Replacing one or more atom with different atoms having electro negativity values also make molecular poles.
- By placing molecules under external electric field or magnetic field also causes to the molecule.