Answer:

Explanation:
The three main particles that make an atom are:
- Proton: its mass is
, it carries an electric charge of +e (
), and it is located in the nucles of the atom
- Neutron: its mass is
, it carries no electric charge, and it is also located in the nucleus of the atom
- Electron: its mass is
, it carries an electric charge of -e (
), and it is located outside the nucleus
Ok so use trigonometry to work out the vertical component of velocity.
sin(25) =opp/hyp
rearrange to:
30*sin(25) which equals 12.67ms^-1
now use SUVAT to get the time of flight from the vertical component,
V=U+at
Where V is velocity, U is the initial velocity, a is acceleration due to gravity or g. and t is the time.
rearranges to t= (V+u)/a
plug in some numbers and do some maths and we get 2.583s
this is the total air time of the golf ball.
now we can use Pythagoras to get the horizontal component of velocity.
30^2-12.67^2= 739.29
sqrt739.29 = 27.19ms^-1
and finally speed = distance/time
so--- 27.19ms^-1*2.583s= 70.24m
The ball makes it to the green, and the air time is 2.58s
Answer:
The change in momentum = -20000 kg m/s.
Explanation:
Mass m = 1000 kg
speed v₁ = 20 m/s
speed v₂ = 0 m/s
We know that,
The change in momentum
ΔP = m (Δv)
ΔP = m (v₂ - v₁)
= 1000 (0 - 20)
= 1000 (-20)
= -20000 kg m/s
Thus, the change in momentum = -20000 kg m/s.
Note: negative sign indicates that the velocity is reducing when it hits the barrier.
Answer:
The driver hits the stationery dog because the applied force is less than required force
Explanation:
Kinetic energy will be given by
where m is the mass of the vehicle and v is the speed/velocity of the vehicle.
Substituting 800 Kg for m and 20 m/s for v we obtain

Frictional force by vehicle pads is given by
where d is the distance moved
Substituting 160000 for KE and 50 m for d we obtain

Therefore, the vehicle hits the dog since the required force is 3200N but the driver applied only 2000 N