This is because of the conservation of angular momentum, which allows most planets to spin in the same direction, but Venus and Uranus have seem to ignore this as they spin in different directions, as Venus spins clockwise and Uranus is on its side
Hello.
The gaseous state is the more compressible state, because it has the volume of its container.
The liquid state is virtually incompressible, and the solid state compression is very small.
The plasma is another state that has high compression, but in this case the matter is not bound(we don't have the proton in the core of the atom)
Answer: 0.85 meters (with and without sigfigs)
Explanation: To find the wavelength, you just have to switch around the equation for wave speed: v (wave speed) = λ (wavelength)*f (frequency) so λ (wavelength) = v (wave speed)/f (frequency). You don't have the wave speed but you can calculate it. Since wave speed is measured in meters/second or m/s, you just have to divide the amount of meters you were given by the amount of seconds. You will get 340 m/s. Next, you have to plug the values into the equation: λ (wavelength) = 340 m/s (wave speed)/400 Hz (frequency). The answer is 0.85 meters (seconds cancel) and has the correct number of significant figures.
Answer:
increase by 8 percent
Explanation:
<em>Price elasticity of supply of a product is the degree of responsiveness of supply of that product to a change in price.</em> Simply put:
Price Elasticity of supply = change in quantity supply/ change in price.
In this case, price elasticity of supply of gasoline = 0.4
Percentage price increase = 20 percent.
Hence,
0.4 = change in supply/20
Change in supply = 20 x 0.4 = 8 percent
<em>Therefore, the quantity supply of gasoline will increase by 8 percent</em>
Answer:
Explanation:
Answer:
Explanation:
Given that,
System of two particle
Ball A has mass
Ma = m
Ball A is moving to the right (positive x axis) with velocity of
Va = 2v •i
Ball B has a mass
Mb = 3m
Ball B is moving to left (negative x axis) with a velocity of
Vb = -v •i
Velocity of centre of mass Vcm?
Velocity of centre of mass can be calculated using
Vcm = 1/M ΣMi•Vi
Where M is sum of mass
M = M1 + M2 + M3 +...
Therefore,
Vcm=[1/(Ma + Mb)] × (Ma•Va +Mb•Vb
Rearranging for better understanding
Vcm = (Ma•Va + Mb•Vb) / ( Ma + Mb)
Vcm = (m•2v + 3m•-v) / (m + 3m)
Vcm = (2mv — 3mv) / 4m
Vcm = —mv / 4m
Vcm = —v / 4
Vcm = —¼V •i