Answer:
The correct statement is option c, that is, particles discharged in the air by volcanoes fall to the ground and enrich the soil.
Explanation:
The eruptions of volcanoes lead to the dispersion of ash over the broader regions surrounding the site of eruption. On the basis of the chemistry of the magma, the ash will be comprising different concentrations of soil nutrients. While the major elements found in the magma are oxygen and silica, the eruptions also lead to the discharging of carbon dioxide, water, hydrogen sulfide, sulfur dioxide, and hydrogen chloride.
In supplementation, the eruptions also discharge bits of rocks like pyroxene, potolivine, amphibole, feldspar that are in turn enriched with magnesium, iron, and potassium. As an outcome, the areas which comprise huge deposits of the volcanic soil are quite fertile.
Answer:
Because of oxygen toxicity.
Explanation:
Oxygen toxicity.
Oxygen has been known to cause central nervous system (CNS) toxicity when the pressure gets higher. This toxicity can cause convulsions, and this can cause the diver to drown.
The current standard maximum safe oxygen working pressure is 1.4 atm ppO2. This is equal to 56.5m/185′ when breathing air (21% O2 / 79% N). Below that depth the fraction of oxygen in a breathing gas must be reduced, and in order to maintain this maximum pressure of 1.4 ppO2, Helium must be added.
Answer:
Cp = 0.237 J.g⁻¹.°C⁻¹
Explanation:
Amount of energy required by known amount of a substance to raise its temperature by one degree is called specific heat capacity.
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 640 J
m = mass = 125 g
Cp = Specific Heat Capacity = <u>??</u>
ΔT = Change in Temperature = 43.6 °C - 22 °C = 21.6 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 640 J / (125 g × 21.6 °C)
Cp = 0.237 J.g⁻¹.°C⁻¹
4 grams , mass cannot be created or destroyed. it has to be the same on both sides of the equation
<span>The balanced reaction that describes the reaction between hydrogen and nitrogen to produce ammonia is expressed 3H2 + N2 = 2NH3. The yield of the reaction is equal to the actual amount of product divided to the theoretical amount of product multiplied by 100 percent. 26.3 grams of H2 theoretically produces149 grams. The yield is 79 divided by 149 equal to 53.02 percent. </span>