Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to 
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.

As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be 
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
Answer: B. CO
Explanation:
Diatomic molecules are those that are formed by two atoms of the same chemical element (homonuclear diatomic molecule) or different chemical element (heteronuclear diatomic molecule).
In this sense, oxygen is a homonuclear diatomic molecule because it is formed by two atoms of the same element (
) and Carbon monoxide (
) is heteronuclear diatomic molecule.
Sodium Chloride
is not a diatomic molecule because is a product of ionization, but it can be diatomic in its gas phase with a polar covalent bond.
Answer:
The Gravitational Force is reduced 4 times
Explanation:
The equation of Gravitational force follows:
F = (G*m1*m2)/r^2
Assume that G*m1*m2 = 1 and r = 1:
F = 1/1^2 = 1 N
Multiply the radius by 2
F = 1/2^2 = 1/4 N
So doubling the distance reduces the force 4 times.
During the "U" part of the turn, the car would follow an approximately circular path, and if it's moving at a constant speed, it would have to accelerate toward the center of the circle in order to change its direction.
1.) The object's Velocity
Faster it goes, more kinetic energy it has