C. change length and direction
Explanation:
The density of the material in which the light wave is travelling affects the speed of the wave. Different materials have different densities and they effect differently light waves which travel through them. Light waves may change direction at the boundary between two transparent materials, depending on material density. Density also impacts the speed of light. The denser the material, the slower light travels through it. The wavelength also decreases as light travels through the denser medium.
What is the magnitude of force required to accelerate a car of mass 1.7 × 10³ kg by 4.75 m/s²
Answer:
F = 8.075 N
Explanation:
Formula for force is;
F = ma
Where;
m is mass
a is acceleration
F = 1.7 × 10³ × 4.75
F = 8.075 N
Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
Answer:
F = 9.82 N
Explanation:
given,
Force x-component = 5.69 N
Force y-component = 8 N
magnitude of force = ?
Resultant of force




F = 9.82 N
Hence, the magnitude of force is equal to 9.82 N