Answer:
The lightbulb will NOT light.
Explanation:
You put me in a difficult position. I can't help it, but the "sample answer" is by far the best way to explain this, briefly and correctly. There's no other choice but to copy it.
This is a short circuit. The branch without the bulb has almost no resistance, so all the current will flow through that branch instead of flowing through the bulb.
<em>If</em> the lower switch were <u>opened</u>, THEN we would have a series circuit. Current would no longer have any other choice but to flow through the bulb, and the bulb would light.
Answer:
8.1 N/49 N=0.1653 which means 16.53% of the weight of the object on Earth.
Explanation:
On the Moon, where the gravitational constant is 1.62
, the weight of the 5 kg object will be: 
Where the answer is in Newtons (N) since all quantities are given in the SI system.
On Earth, on the other hand, the weight of the object is:

Therefore the object's weight on the Moon compared to that on Earth will be:

That is, 16.53% of the weight the object has on Earth.
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius
-0 m/s
- average velocity=displacement/time
- the runners displacement is zero so her average velocity must be zero