Answer: The magnitude of the current in the second wire 2.67A
Explanation:
Here is the complete question:
Two straight parallel wires are separated by 7.0 cm. There is a 2.0-A current flowing in the first wire. If the magnetic field strength is found to be zero between the two wires at a distance of 3.0 cm from the first wire, what is the magnitude of the current in the second wire?
Explanation: Please see the attachments below
Answer:
The greatest speed of the car is 19.36m/s
Explanation:
The maximum speed the car will attain without skidding is given by:
F= uN = umg ...eq1
But F = mv^2/r
mv^2/r = umg
Dividing both sides by m, leaves you with:
V= Sqrt(ugr)
Where u = coefficient of static friction
g = acceleration due to gravity
r = raduis
Given:
U = 0.82
r=0.82
g= 9.8m/s
V = Sqrt(0.82 × 9.8 × 45)
V = Sqrt(374.85)
V = 19.36m/s
Answer:
[ 2.67 , 1 ] m
Explanation:
Given:-
- The side lengths of the rods are as follows:
a = 4 m , b = 4 m , c = 5 m
a = Base , b = Perpendicular , c = Hypotenuse
- All rods are made of same material with uniform density. With
Find:-
Find the coordinates of the center of mass of the triangle.
Solution:-
- The center of mass of any triangle is at the intersection of its medians.
- So let’s say we have a triangle with vertices at points (0,0) , (a,0) , and (0,b).
- Median from (0,0) to midpoint (a/2,b/2) of opposite side has equation:
bx−ay=0
- Median from (a,0) to midpoint (0,b/2) of opposite side has equation:
bx+2ay=ab
- Median from (0,b) to midpoint (a/2,0) of opposite side has equation:
2bx+ay=ab
- Solve all three equations simultaneously:
bx−ay=0 , bx = ay
ay + 2ay = ab , 3ay = ab , y = b/3
bx = b/3
x = a / 3
- So the distance from the median to each leg of the triangle is 1/3 length of other leg.
- So the coordinates of the centroid for right angle triangle would be:
[ 2a/3 , b/3 ]
[ 2.67 , 1 ] m
The yo-yo speeds up when you rub it
The force required to start an object sliding across a uniform horizontal surface is larger than the force required to keep the object sliding at a constant velocity once it starts.
The magnitudes of the required forces are different in these situations because the force of kinetic friction is less than the force of static friction. <em>(d)</em>