To solve this problem we will apply the concepts related to momentum and momentum on a body. Both are equivalent values but can be found through different expressions. The impulse is the product of the Force for time while the momentum is the product between the mass and the velocity. The result of these operations yields equivalent units.
PART A ) The Impulse can be calculcated as follows

Where,
F = Force
Change in time
Replacing,


PART B) At the same time the momentum follows the conservation of momentum where:
Initial momentum= Final momentum
And the change in momentum is equal to the Impulse, then

And

There is not initial momentum then



Gases can be compressed, because they just take up the space surrounding them. The attractive forces between the particles in a gas are very weak, so the particles are free to move in random direction. They just move along until they collide, either with the walls of the container or with each other. Moreover, gases can be compressed because the particles are far apart and they have space to move into.
Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
Answer:
Some lenses are used to focus light to a pre-defined point based on the amount of curvature of their surfaces.
In a piano design convex, some surfaces are flat while others has positive lenses (biconvex)
Explanation:
Solution
These lenses are applied to pay attention to light in a point pre-defined based on the amount of curvature of their surfaces.
For that of a plano-convex design, one surface has a positive curve and for biconvex lenses, both surfaces are positively curved while the other remains flat.
when used practically, plano-convex lenses are most commonly used where the object being imaged is far apart from lens.
Good morning dear...
Have a beautiful and joyful day ahead.