<span>79.75m/s .................................</span>
1. Frequency is the number of complete waves that pass a point in a second. 2.Wavelength is the distance between two crests or two troughs. 3.Time period <span> is the time it takes for one complete wave to pass a given point. 4. Amplitude is the height of the wave. Hence option 4 is correct. </span>
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
The sound gets louder as it gets closer and when it passes is gets softer
2. The zeros in front do not matter