Answer:
B
Explanation:
the graph shows the line going up (accelerating) and it isn't curving like d so it doesn't stop accelerating
Hope this helps :)
Therefore the world's record high temperature of 134.0°F (56.7°C) is held by Furnace Creek Ranch in Death Valley, California. That global high temperature was attained on July 10, 1913.
Given: Mass of earth Me = 5.98 x 10²⁴ Kg
Radius of earth r = 6.37 x 10⁶ m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Smallest possible period T = ?
Formula: F = ma; F = GMeMsat/r² Centripetal acceleration ac = V²/r
but V = 2πr/T
equate T from all equation.
F = ma
GMeMsat/r² = Msat4π²/rT²
GMe = 4π²r³/T²
T² = 4π²r³/GMe
T² = 39.48(6.37 x 10⁶ m)³/6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)
T² = 1.02 x 10²² m³/3.99 x 10¹⁴ m³/s²
T² = 25,563,909.77 s²
T = 5,056.08 seconds or around 1.4 Hour
Answer:
m = 0.4 [kg]
Explanation:
Weight is considered as a force and this is equal to the product of mass by gravitational acceleration.

where:
W = weight = 0.8 [N]
m = mass [kg]
g = gravity acceleration 2[N/kg]
Therefore:
![m=W/g\\m = .8/2\\m = 0.4 [kg]](https://tex.z-dn.net/?f=m%3DW%2Fg%5C%5Cm%20%3D%20.8%2F2%5C%5Cm%20%3D%200.4%20%5Bkg%5D)
Answer:
2.83 m
Explanation:
The relationship between frequency and wavelength for an electromagnetic wave is given by

where
is the wavelength
is the speed of light
is the frequency
For the FM radio waves in this problem, we have:
is the minimum frequency, so the maximum wavelength is

The maximum frequency is instead

Therefore, the minimum wavelength is

So, the wavelength at the beginning of the range is 2.83 m.