I'm assuming a 5-card hand being dealt from a standard 52-card deck, and that there are no wild cards.
A full house is made up of a 3-of-a-kind and a 2-pair, both of different values since a 5-of-a-kind is impossible without wild cards.
Suppose we fix both card values, say aces and 2s. We get a full house if we are dealt 2 aces and 3 2s, or 3 aces and 2 2s.
The number of ways of drawing 2 aces and 3 2s is

and the number of ways of drawing 3 aces and 2 2s is the same,

so that for any two card values involved, there are 2*24 = 48 ways of getting a full house.
Now, count how many ways there are of doing this for any two choices of card value. Of 13 possible values, we are picking 2, so the total number of ways of getting a full house for any 2 values is

The total number of hands that can be drawn is

Then the probability of getting a full house is

Answer: x > 4
.........................
X = 5; 2(5) - 1 = 9. 4(9) = 36
Answer:
y= -3x-6
Step-by-step explanation:
I believe this is correct
Answer:
El área de la finca que está sembrada por café es 360 m².
Step-by-step explanation:
La finca de Federico tiene tiene un área de 576 m².
de la finca están sembrados de naranjas. Entonces, el área de la finca que está sembrada por naranjas se calcula mediante:
576 m²*
= 216 m²
Sabiendo que el resto de la finca esta sembrada de café, esta área se calcula mediante la diferencia del área total de la finca y el área sembrada por naranjas:
576 m² - 216 m²= 360 m²
<u><em>El área de la finca que está sembrada por café es 360 m².</em></u>