Mixture/ compound
hope this helps
Linking monomers together to form a polymer .This chemical reaction also forms water molecules.
<h3>What is Polymerization?</h3>
This is a type of reaction which involves the linking of two or more monomers to form a polymer.
Dehydration reaction forms water molecules as part of the product thereby making it the most appropriate choice.
Read more about Dehydration here brainly.com/question/1301665
#SPJ1
Answer: 122 moles
Procedure:
1) Convert all the units to the same unit
2) mass of a penny = 2.50 g
3) mass of the Moon = 7.35 * 10^22 kg (I had to arrage your numbers because it was wrong).
=> 7.35 * 10^22 kg * 1000 g / kg = 7.35 * 10^ 25 g.
4) find how many times the mass of a penny is contained in the mass of the Moon.
You have to divide the mass of the Moon by the mass of a penny
7.35 * 10^ 25 g / 2.50 g = 2.94 * 10^25 pennies
That means that 2.94 * 10^ 25 pennies have the mass of the Moon, which you can check by mulitiplying the mass of one penny times the number ob pennies: 2.50 g * 2.94 * 10^25 = 7.35 * 10^25.
5) Convert the number of pennies into mole unit. That is using Avogadros's number: 6.022 * 10^ 23
7.35 * 10^ 25 penny * 1 mol / (6.022 * 10^ 23 penny) = 1.22* 10^ 2 mole = 122 mol.
Answer: 122 mol
Answer:
option A = C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
Explanation:
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
This reaction correctly hold the law of conservation of mass.
Other options:
C + 4H₂ → CH₄
12 g + 8g = 16 g
20 g = 16 g
This reaction do not hold the law of conservation of mass.
3H₂O → 3H₂ + 3O₂
54 g = 6 g + 96 g
54 g = 102 g
This reaction do not hold the law of conservation of mass.
2Na + Cl → NaCl
46 g + 35.5 g = 58.5 g
81.5 g = 58.5 g
This reaction do not hold the law of conservation of mass.
Answer: 17.34 grams of alum will be produced if 0.9875 g of Aluminium foil was used.
Explanation: Reaction to form alum from Aluminium is given as:

We are given Aluminium to be the limiting reactant, so the formation of alum will be dependent on Aluminium because it limits the formation of product.
By stoichiometry,
2 moles of Al is producing 2 moles of Alum
Mass of 2 moles of Aluminium = (2 × 27)g/mol = 54 g/mol
Mass of 2 moles of alum = (2 × 474)g/mol = 948 g/mol
54 g/mol of aluminium will produce 948 g/mol of alum, so

Amount of Alum produced = 17.34 grams
Theoretical yield of alum = 17.34 grams.