Ans 1. Both
Ans 2. Once inside plants, carbon moves through food chains, where organisms become nutrients including herbivores, carnivores and ultimately, decomposers. Once buried in the soil, carbon can be converted into fossil fuels over long periods of time and then also reenter the atmosphere by combustion. The Law of Conservation of Matter states that matter cannot be created or destroyed. The carbon cycle is an example of the Law
Ans 3. Most of the chemical energy needed for life is stored in organic compounds as bonds between carbon atoms and other atoms. The law of conservation of energy states that energy can not be created or destroyed. Thus, just like matter energy is also conserved in the process.
Hope it helps
- - Landslides are caused by earth quakes or uneven ground leveled movement and a mudslide is caused by lost of witness, like rain, causing the mud to turn into a runny texture.
<span />
Answer:
a. The resonance effect of the hydroxyl group stabilizes the anionic intermediate
Explanation:
The resonance effect stabilizes the the charge through the delocalization of the pi bonds. The resonance stabilization mainly occurs in the conjugated pi systems.
For example, phenol forms a strong hydrogen bonds than the nonaromatic alcohols as the
dipole present in the hydroxyl group is being stabilized by the presence of the aromatic ring of phenol.
Thus the resonance effect of the hydroxyl group stabilizes the anionic intermediate.
Answer:
a. Beryllium,
b. Nitrogen
Explanation:
Most similar to strontium is beryllium, they both are in the 2d group.
Least similar to strontium is nitrogen. Strontium is a metal in the 2d group, Nitrogen is non-metal in the 15th group
Answer:
28.7664 kJ /mol
Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:

Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
The graph of ln P and 1/T gives a slope of - ΔHvap/ R and intercept of c.
Given :
Slope = -3.46×10³ K
So,
- ΔHvap/ R = -3.46×10³ K
<u>ΔHvap = 3.46×10³ K × 8.314×10⁻³ kJ /mol K = 28.7664 kJ /mol</u>
<u></u>