Answer : The volume of one mole of gas is dependent of temperature and pressure.
Explanation:
At <span><span>0o</span>Cand1atm</span> one mole of an ideal gas would be <span>≈22.4L</span>, which is the same as <span>22.4d<span>m3</span></span>
If you double the pressure, the same amount (mole) of gas would take up only half the space.
If the temperature changes (and pressure stays constant), the gas will expand or contract by about <span>1%/<span>3o</span></span>.
Answer:308 N/m
Explanation:
Given
mass
wavelength
We know frequency =
f=7.772 Hz
As the frequency of radio waves is same as the frequency at which object oscillates




Answer:
The correct option is D
Explanation:
This question can be better understood when discussed using the Newton's first law of motion which states that an object would continue to move with a uniform speed (in a straight line) unless acted upon by an external force. What happens here (in the question) is that the bike rider would have continued moving at a constant speed (to the right) if not for the opposing force of the wind that acted against her (to the left). <u>This wind/force would cause her speed to reduce or slow down (as posited by the law)</u>.
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m