To solve this problem we will apply the concepts related to the electric field, linear charge density and electrostatic force.
The electric field is

Here,
= Linear charge density
= Permittivity of free space
r = Distance
The linear charge density can be written as,
Linear charge density is given as

Replacing,


The initial and final electric Force can be written as function of the charge and the electric field as


If we replace the value for the electric field we have,

Length is one third at the end, then

The ratio of the force is


Therefore the required ratio is 3
A. The Dawes limit tells
us that the resolving power is equal to 11.6 / d, where d is the diameter of
the eye’s pupil in units of centimeters. The eye's pupil can dialate to approximately
7 mm, or 0.7 cm. So 11.6 / .7 = 16.5 arc seconds, or about a quarter arc
minute ~ 17 arc seconds<span>
Although, the standard answer for what people can really see
is about 1 arc minute.
</span>
<span>
B. It is considered as linear, so given a 10 meter telescope
(10,000 mm): </span>
10000 / 7 = 1428 times
better for the 10 meter scope ~ 1400 times better (in 2 significant figures)
<span>
<span>C. For a 7 cm interferometer, that is just similar to a 7 cm
scope. Therefore we would expect </span></span>
<span><span>11.6 / 7 = 1.65 arc seconds ~ 1.7 arc seconds</span></span>
<span><span>T</span></span>his value is what
we typically can get from a 7 cm scope.
Answer:243joules
Explanation:
Mass(m)=54kg
Velocity(v)=3m/s
Kinetic energy =(m x v^2)/2
Kinetic energy =(54 x 3^2)/2
Kinetic energy =(54 x 9)/2
Kinetic energy =486/2
Kinetic energy =243joules
<span>A material through which a current does not move easily is called
an insulator.
Technically, charges CAN move through an insulator, but they lose
a lot of energy doing it, so the current that flows through the insulator
is very very small, usually too small to even measure.
Another way to look at it: Insulators have high resistance.
</span>