Answer:
1700 kg
Explanation:
Let’s use conservation of momentum
32.5 * 388 = 7.42 * mc
mc = 1699.46
mc = 1700 kg
Answer:
mass is 6.97 pounds
Explanation:
given data
volume = 3.1 liters
density = 1.020 g/ml = 1.02 kg/l
to find out
How many pounds of blood plasma
solution
we know mass formula from density that is
density = mass / volume
so
mass = density × volume ...............1
so put all value to get mass
mass = 1.02 × 3.1
mass = 3.162 kg
mass = 3.162 × 2.205 pounds
so mass is 6.97 pounds
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)
Answer:
68 readings.
Explanation:
We need to take this problem as a statistic problem where the normal distribution table help us.
We can start considerating that X is the temperature of the solution, then



For a confidence level of 90% our
is 1.645
Therefore,

Substituting for
and re-arrange for n, we have that n is equal to




We need to make 68 readings for have a probability of 90% and our average is within 