Solution:
The relation between the potential difference and the electric field between the plates of the parallel plate capacitor is given by :

Differentiating on both the sides with respect to time, we get

Therefore, the rate of the electric field changes between the plates of the parallel plate capacitor is given by :


V/m-s
Answer:
Increases
Explanation:
Because acceleration goes higher
Newton's 2nd law of motion is: <em>Force</em> = (mass) x (acceleration) .
Force is the only way to change an object's velocity.
The momentum of the second ball was 15 kg.m/s.
<h3>What is inelastic collision?</h3>
In which collision some amount of kinetic energy of the system is lost that called inelastic collision. In purely inelastic collision, two bodies stick together. But principle of conservation of linear momentum is obeyed.
In the given question,
Two balls collide and after collision, the final momentum of the system = 18 kg.m/s.
Initial velocity of 1st ball of mass 3 kg is 1 m/s.
So, Initial momentum of first ball = mass × velocity = (3 kg) × (1 m/s) = 3 kg.m/s.
According to Principle of conservation of linear momentum for this inelastic collision,
Initial momentum of first ball + initial momentum of second ball = final momentum of the system
⇒ initial momentum of second ball = final momentum of the system - Initial momentum of first ball
= 18 kg.m/s - 3 kg.m/s.
= 15 kg.m/s.
Hence, initial momentum of second ball = 15 kg.m/s.
Learn more about momentum here:
brainly.com/question/24030570
#SPJ2
Answer:
from O toWl Q partical is accelerating with constant magnitude. and from Q to P is decelerating with constant magnitude.
Explanation:
There are many students who can not get answers step by step and on time
So there are a wats up group where you can get help step by step and well explained by the trusted experts.