Answer: Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
Explanation: Impulse is defined as the force acting on an object for a short period or interval of time.
Mathematically it is given by the relation:
Impulse = Force
Time
According to the numerical values given in the question, I = 202 Ns and T = 0.244 s
So, Force F =
=
= 827.86 N
Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
<span>A Learner’s license is available to those at least 15 years old that have passed the written and vision tests.
</span><span>An intermediate license, you must be 16 or 17 years old and you must have held a learner’s license for at least 12 months without receiving any traffic violations.</span>
Answer:
23.67 km / hr
Explanation:
car travels 355 km (d)
duration = 15 hrs (t)
average speed formula = v = d / t
v = 355 km / 15 hr
v = 23.67 km / hr
Answer:
Magnetic fields can be used to make electricity
Moving a magnet around a coil of wire, or moving a coil of wire around a magnet, pushes the electrons in the wire and creates an electrical current. Electricity generators essentially convert kinetic energy (the energy of motion) into electrical energy
Explanation:
Answer:

Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

The initial potential energy of the spring is given by the equation:

the Kinetic energy of the block is then given by the equation:

so we can now set them both equal to each other, so we get:

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

so now we can solve this for the final velocity, so we get:
