Answer:
true two falling inflated balls of different mass lands at the smae time because gravity acts to both in a same way
The best and most correct answer among the choices provided by the question is the second choice "Lake Michigan"
A hurricane<span> is a storm that occurs in the </span>Atlantic Ocean <span>and northeastern Pacific </span>Ocean<span>, a typhoon occurs in the northwestern Pacific </span>Ocean<span>, and a cyclone occurs in the south Pacific or Indian </span>Ocean<span>. Tropical cyclones can be categorized by intensity.</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
Answer:
Explanation:
parallel capacitances add directly
Series capacitances add by reciprocal of sum of reciprocals.
Ceq = [ C ] + [1 / (1/C + 1/C)] + [1 / (1/C + 1/C + 1/C)]
Ceq = [ C ] + [C / 2] + [C / 3]
Ceq = [ 6C/6 ] + [3C / 6] + [2C / 6]
Ceq = 11C/6
Complete Question
A gas gun uses high pressure gas tp accelerate projectile through the gun barrel.
If the acceleration of the projective is : a = c/s m/s2
Where c is a constant that depends on the initial gas pressure behind the projectile. The initial position of the projectile is s= 1.5m and the projectile is initially at rest. The projectile accelerates until it reaches the end of the barrel at s=3m. What is the value of the constant c such that the projectile leaves the barrel with velocity of 200m/s?
Answer:
The value of the constant is 
Explanation:
From the question we are told that
The acceleration is 
The initial position of the projectile is s= 1.5m
The final position of the projectile is 
The velocity is 
Generally 
and acceleration is 
so

=> 

integrating both sides

Now for the limit
a = 200 m/s
b = 0 m/s
c = s= 3 m
d =
= 1.5 m
So we have

![[\frac{v^2}{2} ] \left | 200} \atop {0}} \right. = c [ln s]\left | 3} \atop {1.5}} \right.](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20200%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%20%3D%20c%20%5Bln%20s%5D%5Cleft%20%7C%203%7D%20%5Catop%20%7B1.5%7D%7D%20%5Cright.)
![\frac{200^2}{2} = c ln[\frac{3}{1.5} ]](https://tex.z-dn.net/?f=%5Cfrac%7B200%5E2%7D%7B2%7D%20%20%3D%20%20c%20ln%5B%5Cfrac%7B3%7D%7B1.5%7D%20%5D)
=> 

Answer:1.301 s
Explanation:
Given
Initial Velocity(u)=30 m/s
Height of cliff=8.3 m
Time taken to cover 8.3 m

here Initial vertical velocity is 0



Horizontal distance

