I do a yoga mat that could be different to your answer
By Newton's second law, the net force on the object is
∑ <em>F</em> = <em>m</em> <em>a</em>
∑ <em>F</em> = (2.00 kg) (8 <em>i</em> + 6 <em>j</em> ) m/s^2 = (16.0 <em>i</em> + 12.0 <em>j</em> ) N
Let <em>f</em> be the unknown force. Then
∑ <em>F</em> = (30.0 <em>i</em> + 16 <em>j</em> ) N + (-12.0 <em>i</em> + 8.0 <em>j</em> ) N + <em>f</em>
=> <em>f</em> = (-2.0 <em>i</em> - 12.0 <em>j</em> ) N
I believe this is electron degeneracy, because the star is essentially having too many reactions too fast and collapses in on itself eventually.
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Answer:

Explanation:
For sound waves we have v=d/t where v is the speed of sound and d the distance between the astronauts, while for electromagnetic waves we have c=D/t where c is the speed of light and D the distance between the spaceship and Earth. <em>We have written both times as the same</em> because is what is imposed by the problem, so we have t=d/v=D/c, which means:

And for our values:
