<u>Answer:</u> The entropy change of the liquid water is 63.4 J/K
<u>Explanation:</u>
To calculate the entropy change for same phase at different temperature, we use the equation:

where,
= Entropy change
= molar heat capacity of liquid water = 75.38 J/mol.K
n = number of moles of liquid water = 3 moles
= final temperature = ![95^oC=[95+273]K=368K](https://tex.z-dn.net/?f=95%5EoC%3D%5B95%2B273%5DK%3D368K)
= initial temperature = ![5^oC=[5+273]K=278K](https://tex.z-dn.net/?f=5%5EoC%3D%5B5%2B273%5DK%3D278K)
Putting values in above equation, we get:

Hence, the entropy change of the liquid water is 63.4 J/K
I think variation.... have a great day
In the presence of an emulsifying agent, a mixture of oil and water becomes a colloidal dispersion.
Colloidal dispersion <span><span>otherwise </span>colloid</span><span> is </span><span>a system, in which discrete particles, droplets or bubbles of a dispersed phase (in this case oil), whose size at least in one dimension is in the range from 1 to 1000 nm are distributed in the other, usually continuous phase - dispersion medium (in this case water) differing from the dispersed phase in composition or state of aggregation.</span>
The Kelvin temperature of a substance is directly equal to the avg kinetic energy of particles of a substance. Hope that is what your looking for