I think they can change into ions
Answer : The cell potential for this reaction is 0.50 V
Explanation :
The given cell reactions is:

The half-cell reactions are:
Oxidation half reaction (anode): 
Reduction half reaction (cathode): 
First we have to calculate the cell potential for this reaction.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Zn^{2+}]}{[Pb^{2+}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BPb%5E%7B2%2B%7D%5D%7D)
where,
F = Faraday constant = 96500 C
R = gas constant = 8.314 J/mol.K
T = room temperature = 
n = number of electrons in oxidation-reduction reaction = 2
= standard electrode potential of the cell = +0.63 V
= cell potential for the reaction = ?
= 3.5 M
= 
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this reaction is 0.50 V
1. At constant tempaerature and pressure, 3 tablets produce 600cm^3 of gas
Thus calculating for 1 tablet that produces 600 / 3 = 200 cm^3
So now two tablets produce 200 x 2 = 400 cm^3
2. We have the equation PV = nRT, n being the number of moles
Pressure P = 1,000 kPa
Volume V = 3 L
R = 8.31 L kPa/mol-K
Temperature T = 298 K
n = PV / RT = (1000 x 3) / (8.31 x 298) = 3000 / 2476.38 = 1.21 moles
Number of moles = 1.21 moles.
V
1
/T
1
=V
2
/T
2
(900.0 mL) / (300.0 K) = (x) / (405.0 K); x = 1215 mL.
Change the 900 to 800, and the 300 to 27, then change the 405 to 132. And solve
Answer:
C6H12O6 —> 2C2H5OH + 2CO2
Explanation:
The equation for the reaction is given below:
C6H12O6 —> C2H5OH + CO2
We can balance the equation above as follow:
There are 12 atoms of H on the left side and 6 atoms of the right side. It can be balance by putting 2 in front of C2H5OH as shown below:
C6H12O6 —> 2C2H5OH + CO2
There are 6 atoms of C on the left side and 5 atoms on the right side. It can be balance by putting 2 in front of CO2 as shown below:
C6H12O6 —> 2C2H5OH + 2CO2
Now the equation is balanced.