Answer:
Explanation:
Given
mass 
Force 
door knob is located at a distance of r=0.8 m from axis
Angular acceleration of door 
Torque 
where I=moment of inertia


Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
Answer:
B
Explanation:
if no force acts upon it it will just continue moving
hope this helps!! have a wonderfull day!
D is s s s s s ss s s s s
Answer:
d₁ = 0.29 in
d₂ = 0.505 in
Explanation:
Given:
T = 1500 lbf in
L = 10 in
x = 0.5 L = 5 in

First case: T = T₁ + T₂
T₂ = T - T₁ = 1500 - 750 = 750 lbf in
If the shafts are in series:
θ = θ₁ + θ₂
θ = ((T₁ * L₁)/GJ) + ((T₂ * L₂)/GJ)
Second case: If d₁ ≠ d₂
θ = ((T₁ * L₁)/GJ₁) + ((T₂ * L₂)/GJ₂) = 0 (eq. 1)
t₁ = t₂
(eq. 2)
T₁ + T₂ = 1500 (eq. 3)
θ₁ first case = θ₁ second case
Replacing:

The same way to θ₂:

From equation 2, we have:
d₁ = 0.587 * d₂
From equation 3, we have:
d₂ = 0.505 in
d₁ = 0.29 in