The items are answered below and are numbered separately for each compound.
The freezing point of impure solution is calculated through the equation,
Tf = Tfw - (Kf)(m)
where Tf is the freezing point, Tfw is the freezing point of water, Kf is the freezing point constant and m is the molality. For water, Kf is equal to 1.86°C/m. In this regard, it is assumed that m as the unit of 0.25 is molarity.
1. NH4NO3
Tf = 0°C - (1.86°C/m)(0.25 M)(2) = -0.93°C
2. NiCl3
Tf = 0°C - (1.86°C/m)(0.25 M)(4) = -1.86°C
3. Al2(SO4)3
Tf = 0°C - (1.86 °C/m)(0.25 M)(5) = -2.325°C
For boiling points,
Tb = Tbw + (Kb)(m)
For water, Kb is equal to 0.51°C/m.
1. NH4NO3
Tb = 100°C + (0.51°C/m)(0.25 M)(2) = 100.255°C
2. NiCl3
Tb = 100°C + (0.51°C/m)(0.25 M)(4) = 100.51°C
3. Al2(SO4)3
Tb = 100°C + (0.51°C/m)(0.25 M)(5) = 100.6375°C
hold the syringe downward,shake vigorously for sometime,and expel the bubbles through the needle using the syringe plunger. hold the syringe upright, provide a firm tap or flick to the barrel
The melting points of the compounds from the choices are listed below:
a. C25H52 -> +47 to +56 degrees celsius
b. Hg -> -38.83 degrees celsius
c. CaCl2 -> +772 degrees celsius
d. CuO -> +1326 degrees celsius
It is evident from the listed melting points above that mercury (Hg) has the lowest melting point. This is why mercury is liquid at room temperature.
Nucleus is the answer, I believe