To answer this problem, we must make assumptions for simplicity. The first assumption is that, the system only consist of these 3 gases. The second assumption is that, these gases behave ideally. Thus, from Dalton's Law of Partial Pressure, the total pressure is simply the sum of their individual partial pressures.
Total pressure = 2.5 + 0.8 + 3.4 = <em>6.7 atm</em>
Answer : The concentration of
is, 
Explanation :
When we assume this reaction is driven to completion because of the large excess of one ion then we are assuming limiting reagent is
and
is excess reagent.
First we have to calculate the moles of KSCN.


Moles of KSCN = Moles of
= Moles of
= 
Now we have to calculate the concentration of ![[Fe(SCN)]^{2+}](https://tex.z-dn.net/?f=%5BFe%28SCN%29%5D%5E%7B2%2B%7D)
![\text{Concentration of }[Fe(SCN)]^{2+}=\frac{\text{Moles of }[Fe(SCN)]^{2+}}{\text{Volume of solution}}](https://tex.z-dn.net/?f=%5Ctext%7BConcentration%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%7D%7B%5Ctext%7BVolume%20of%20solution%7D%7D)
Total volume of solution = (6.00 + 5.00 + 14.00) = 25.00 mL = 0.025 L
![\text{Concentration of }[Fe(SCN)]^{2+}=\frac{1.08\times 10^{-5}mol}{0.025L}=4.32\times 10^{-4}M](https://tex.z-dn.net/?f=%5Ctext%7BConcentration%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%3D%5Cfrac%7B1.08%5Ctimes%2010%5E%7B-5%7Dmol%7D%7B0.025L%7D%3D4.32%5Ctimes%2010%5E%7B-4%7DM)
Thus, the concentration of
is, 
Answer:
q1..no.2 and 4 are aromatic
D)100%
Every single one has the dominate gene so all the offspring will get it
I hope that helps!