Normal Force = 54 N
acceleration = 1.2 m/s^2
For Normal Force:
According to the force diagram, we can come up with the equation (all up and down forces):
10 sin 30 + Normal Force - 58.8 = 0
Normal Force = 53.8 N = 54 N
For acceleration:
According to the force diagram, we can come up with the equation (all left and right forces):
10 cos 30 - 1.5 = (6.0) (Acceleration)
Acceleration = 1.19 m/s^2 = 1.2 m/s^2
Answer:
The net emissions rate of sulfur is 1861 lb/hr
Explanation:
Given that:
The power or the power plant = 750 MWe
Since the power plant with a thermal efficiency of 42% (i.e. 0.42) burns 9000 Btu/lb coal, Then the energy released per one lb of the coal can be computed as:

= 3988126.8 J
= 3.99 MJ
Also, The mass of the burned coal per sec can be calculated by dividing the molecular weight of the power plant by the energy released per one lb.
i.e.
The mass of the coal that is burned per sec 
The mass of the coal that is burned per sec = 187.97 lb/s
The mass of sulfur burned 
= 2.067 lb/s
To hour; we have:
= 7444 lb/hr
However, If a scrubber with 75% removal efficiency is utilized,
Then; the net emissions rate of sulfur is (1 - 0.75) × 7444 lb/hr
= 0.25 × 7444 lb/hr
= 1861 lb/hr
Hence, the net emissions rate of sulfur is 1861 lb/hr
The locks referred to here are the elevators that are used to transport boats safely from one water level to another in dams. These two varying water depths allow river traffic to operate The attached picture shows how boats enter locks in dam sites.
To regulate traffic, there are traffic lights that signal boatmen to adjust their speed when approaching the lock. The red light means to stop and to steer clear away from the lock to allows the boats inside to exit. The green light signals to enter the lock. Lastly, the amber light means approach the lock at a safe speed and under full control.
Answer:
v = 6.06 m/s
Explanation:
In order for the rider to pass the top of the loop without falling, his weight must be equal to the centripetal force:

where,
v = minimum speed of motorcycle at top of the loop = ?
g = acceleration due to gravity = 9.8 m/s²
r = radius of the loop = diameter/2 = 7.5 m/2 = 3.75 m
Therefore, using these values in equation, we get:

<u>v = 6.06 m/s</u>