Answer:
(b) B
Explanation:
The direction of force on a current carrying wire in a magnetic field can be found using the right hand rule, which states that-"stretch the thumb in the direction of the current, and point the fingers in the direction of magnetic field. The direction of palm will then give the direction of force on the wire
On wire B the forces due to A and C act in the same direction and so strengthen each other. they get added up because the forces act in the same direction.
on wires A and C the forces (due to B and C and A and B
respectively) act in opposite directions and therefore tend to cancel out.
Answer: The rate at which water moves through the plants due to transpiration plays an important role in maintaining plant water balance. ... This moves water and other nutrients absorbed by roots to the shoots and other parts of the plant. Hence, transpiration is very important for the survival and productivity of plants.
Explanation: the explanation of the answers is that Advantages of a dry cell are:
The compact size of a dry cell makes it suitable for powering small electronic devices.(toys, flashlights, portable radios, cameras, hearing aids). The electrolyte used in dry cell is relatively not so harmful to the environment. Dry cells are inexpensive. The main disadvantage of a dry cell is that it cannot be recharged once it loses its electrical power, Because when the cells turn any color then you are died.
It's the only star in the sky (visible from the northern hemisphere) that never seems to move. It stays at almost exactly the same point in the sky, while the other stars all circle around it once a day.
The equation that would allow us to calculate for the acceleration given the distance is written below,
a = (Vf² - Vo²) / 2d
where a is the acceleration, Vf is the final velocity, Vo is the initial velocity, and d is distance.
Substituting the known values,
a = ((84 ft/s)² - (72 ft/s)²) / 2(180 ft) = 5.2 ft/s²
Then, the equation that would relate the initial velocity, distance, acceleration and time is calculated through the equation,
d = Vot + 0.5at²
Substituting the known values,
180 = 72(t) + 0.5(5.2)(t²)
The value of t from the equation is 2.3 s
<em>ANSWER: 2.3 s</em>
Answer:
5.44×10⁶ m
Explanation:
For a satellite with period t and orbital radius r, the velocity is:
v = 2πr/t
So the centripetal acceleration is:
a = v² / r
a = (2πr/t)² / r
a = (2π/t)² r
This is equal to the acceleration due to gravity at that elevation:
g = MG / r²
(2π/t)² r = MG / r²
M = (2π/t)² r³ / G
At the surface of the planet, the acceleration due to gravity is:
g = MG / R²
Substituting our expression for the mass of the planet M:
g = [(2π/t)² r³ / G] G / R²
g = (2π/t)² r³ / R²
R² = (2π/t)² r³ / g
R = (2π/t) √(r³ / g)
Given that t = 1.30 h = 4680 s, r = 7.90×10⁶ m, and g = 30.0 m/s²:
R = (2π / 4680 s) √((7.90×10⁶ m)³ / 30.0 m/s²)
R = 5.44×10⁶ m
Notice we didn't need to know the mass of the satellite.