Answer:
D) The heavier ball will have a higher temperature because the change of temperature is inversely proportional to mass.
Explanation:
As stated in the problem, the amount of heat released by each ball is

where
m is the mass of the ball
Cp is the specific heat of iron (so, it is equal for both balls)
is the change in temperature of each ball
In this problem, we are said that the amount of heat released by the two balls, Q, is the same. Cp is also the same: this means that the product
must be the same for the two balls. So, the mass and the change in temperature are inversely proportional: therefore, the heavier ball will have a smaller change in temperature. And since both balls starts from the same temperature, 100 C, this means that the heavier ball will reach a higher temperature than the lighter ball.
Answer:
When you release the opening of the balloon, gas quickly escapes to equalize the pressure inside with the air pressure outside of the balloon. The escaping air exerts a force on the balloon itself. ... That opposing force—called thrust, in this case—propels the rocket forward.
The answer is D using the work formula
W= F•d but if it was against gravity, it would be 0 if gravity is exerting the same amount, I would pick D using the formula, but I'm not so sure sorry
Answer:
6m/s
Explanation:
the original momentum = mass x velocity = 8x (60+10) = 560
momentum after = mass x velocity of the school bag + mass x velocity of the boy = 10x20 + 60x A
200+60A = 560
A=6