1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
2 years ago
13

Find the number of kilometers in 92.25m.

Chemistry
1 answer:
slava [35]2 years ago
4 0
1000m = 1km
92.25m= ?

We cross multiply
92.25/1000
= 0.09225

Therefore, 92.25m = 0.09225km
You might be interested in
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
Can somebody answer this question for me it might be easy for you answer part 1,2,and 3
jonny [76]

Answer:

hey love! what is the question??

8 0
3 years ago
Read 2 more answers
A scientist is measuring the rate of an enzyme-catalyzed reaction that produces a red-colored product. as the solution containin
slavikrds [6]
The answer would be A will increase and T <span>will decrease.

The product of this reaction emits red light because it absorbs green and blue light. As the reaction occurs, the concentration of the product increase. This will makes absorbance of green and blue light increases and the solution will become redder.</span>
8 0
3 years ago
Read 2 more answers
Explain the difference between fixed and variable oxidation
dem82 [27]

Fixed vs Variable Oxidation is given below.

Explanation:

1.In its compounds, hydrogen has an oxidation number of +1, except. hydrides where the. oxidation number of hydrogen is -1. In their compounds, the metals with fixed oxidation states have the oxidation number that. corresponds with the fixed oxidation number.

A variable oxidation state is a value that determines the charge of the atom depending on certain conditions.

2. Ox­i­da­tion state of el­e­ments is con­sid­ered to be of the most im­por­tant in the study of chem­istry. For some el­e­ments, this fig­ure is con­stant known as fixed oxidation , while for oth­ers it is vari­able is called variable oxidation state.

3. MgCl2 :  magnesium is in Group IIA and all elements in Group IIA have fixed oxidation numbers of +2

FeCl2 :  iron has a variable oxidation number of either +2 or +3 and is not fixed

7 0
3 years ago
Compare and contrast how observations and results can be used to
worty [1.4K]

Answer:

by statistical analyses, especially by determining the p-value

Explanation:

In general, observations and results obtained from experimental procedures are subjected to a statistical test to check the robustness of the working hypothesis. The p-value is the most widely used statistical index in order to test such observations and results. The p-value is the statistical probability of obtaining extreme observed results when the null hypothesis is considered correct. A p-value lesser than 0.05 generally is considered statistically significant and then the null hypothesis can be rejected. In consequence, a very low p-value (which is obtained by statistical analysis of the observations and results), indicates that there is strong evidence in support of the alternative hypothesis.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Calculate the number of moles in 5.96 g KOH
    15·2 answers
  • After watching the squirrels at the local park for several days, Sergei asks his science teacher the following question: “do mor
    11·2 answers
  • Which of these elements has two valence electrons? A. hydrogen (H) B. barium (Ba) C. nitrogen (N) D. krypton (Kr) E. bromine (Br
    7·2 answers
  • Help plz and no link​
    14·1 answer
  • Help!!! i need asapp
    13·1 answer
  • When naming compounds part of the second element's name is dropped and what is added in its place?
    12·1 answer
  • Once formed, how many valence electrons does an anion hold?
    7·1 answer
  • Which example in the video is a physical change?
    5·1 answer
  • What is the potential energy of 25kg rock sitting on the cliff with a height of 230m?​
    14·1 answer
  • Which reaction is not an example of a redox reaction?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!