1.63 moles since 1 mole is equal to 136.4332 grams
Answer:
7.11 x
Hz
Explanation:
The equation for converting wavelength to frequency is ν=c/λ, or the speed of light over wavelength. The speed of light is 3.00 x
, and our wavelength here is 422 x
. All we have to do now is substitute our given values:

After reduction, our answer comes out to be about 7.11 x
Hz.
In order to calculate the final temperature of the gas, we may apply Charles's law, which states that the pressure and temperature of a fixed amount of gas at constant volume are directly proportional. Mathematically:
P/T = constant
(absolute temperature is used, so T = 672 + 273 = 945 K)
Thus,
3.9 / 945 = 12.2 / T
T = 2,956 K or 2,683 °C
Answer:
The answer to your question is 0.62 atm = 62.82 kPa = 471.2 mmHg
Explanation:
Data
P = 0.62 atm
P = ? kPa
P = ? mmHg
Process
1.- Look for the conversion factor of atm to kPa and mmHg
1 atm = 101.325 kPa
1 atm = 760 mmHg
2.- Do the conversions
1 atm ----------------- 101.325 kPa
0.62 atm ------------ x
x = (0,62 x 101.325) / 1
x = 62.82 kPa
1 atm ------------------ 760 mmHg
0.62 atm ------------ x
x = (0.62 x 760)/1
x = 471.2 mmHg
The mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
The given parameters:
- <em>Density of the octane, ρ = 0.703 g/ml</em>
- <em>Volume of octane, v = 3.79 liters</em>
<em />
The mass of the octane burnt is calculated as follows;

The combustion reaction of octane is given as;

From the reaction above:
228.46 g of octane -------------------> 704 g of CO₂ gas
2,664.37 of octane --------------------> ? of CO₂ gas

Thus, the mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
Learn more about combustion of organic compounds here: brainly.com/question/13272422