Answer:
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Explanation:
The strategy here is to account for the species at equilibrium given that the concentration of [NO]=0.062M at equilibrium is known and the quantities initially present and its stoichiometry.
2NO(g) + 2H2(g) ⇒ N2(g) + 2H2O(g)
i mol 0.10 0.050 0.10
c mol -0.038 -0.038 +0019 +0.038
e mol 0.062 0.012 00.019 0.057
Since the volume of the vessel is 1.0 L, the concentrations in molarity are:
[NO] = 0.062 M
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Answer:
Oxidation state shows the total number of electrons which have been removed from an element (a positive oxidation state) or added to an element (a negative oxidation state) to get to its present state
Answer: The early atmosphere
Explanation: Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence. The early atmosphere was probably mostly carbon dioxide, with little or no oxygen.
The correct response would be 3. The alkaline earth metals would tend to lose its valence electrons, in this case 2 of them at different energy levels, to form the same respective ion, which is +2.
Answer:
Al(OH)3 ? i hope this is what you mean.