<span> Greenhouse gases were not historically present in the atmosphere.</span>
The difference between a mixture and a compound is that a mixture can be easily separated like a salad where you can pick things out and a compounds you are usually not able to undo
Yeah so you have to start of with converting your first two values into moles (forget the third one)
97.5 g NO * 1 mol/30.01 g NO = 3.25 moles NO
88.0 g O2 * 1 mol/16.00 g O2 = 5.5 moles O2
now we can find the limiting reactant by checking for the amount of product each reactant should give us by using molar ratios
3.25 mol NO * 2 mol NO2/2 mol NO = 3.25 mol NO2
5.5 mol O2 * 2 mol NO2/ 1 mol O2 = 11
so NO is the limiting reactant since it produces less product/gets used up quicker
3.25 mol NO * 2 mol NO2/2molNO = 3.25 mol NO2
so this is our theoretical yield and the question provides us with the actual yield (2.68 moles). since the actual yield is given in moles, we don't have to convert to grams. our percent yield formula goes like: actual yield/theoretical yield * 100
2.68 mol/3.25 mol * 100 = 82.46%
Answer:
2
Explanation:
The number of carbon atoms that are sp²-hybridized in this alkene is 2
Because all the single bonded carbon atoms in the alkene are sp²-hybridized
There are three(3) single formed via sp² orbitals and one ( 1 ) PI bond formed via Pure-P-orbital
attached below is the some part of the solution
Answer:
1.56 M
Explanation:
This is a dilution process and so a dilution formula is suitably used as follows C1V1 = C2V2 where
C1 = concentration of the stock solution
V1 = volume of the stock solution
C2 = concentration of the resulting (dilute) solution and
V2 = the volume of the resulting (dilute) solution
C1V1 = C2V2 (Making C2 subject of the formula)
C2 = C1V1/V2
Given: C1 = 5.736 M; V1 = 3 Ml; V2 = (3+8) 11 Ml
C2 = 5.736 x 3 / 11
C2 = 1.56 M