In Chemistry, to better determine the position of a certain electron, quantum numbers are used. The four quantum numbers are n, l, m and s. In the given above of n= 4, the principal quantum number is 4 and this represents the overall relative energy in the orbital. This means that we are to find the maximum number of electrons in fourth main energy level and the answer is 32.
Answer:
The amount of water converted from liquid to gas with 6,768 joules is approximately 3.035 g
Explanation:
The amount of heat required to convert a given amount of liquid to gas at its boiling point is known as the latent heat of evaporation of the liquid
The latent heat of evaporation of water, Δ
≈ 2,230 J/g
The relationship between the heat supplied, 'Q', and the amount of water in grams, 'm', evaporated is given as follows
Q = m × Δ
Therefore, the amount of water, 'm', converted from liquid to gas at the boiling point temperature (100°C), when Q = 6,768 Joules, is given as follows;
6,768 J = m × 2,230 J/g
∴ m = 6,768 J /(2,230 J/g) ≈ 3.035 g
The amount of water converted from liquid to gas with 6,768 joules = m ≈ 3.035 g.
LiOH is going to neutralize the acid because it’s a base
<span>I think the correct answer is A. A
buffer is a substance that resists small change in the acidity of a solution
when an acid or base is added to the solution. Usually, a buffer involves a
weak acid or a weak alkali and one of its salt.</span>
D = m/v. v = (3)^3 = 27.
D = 27/27. D = 1g/cm^3