Answer:
Mechanical energy
Explanation:
Mechanical energy is needed for movement of objects. Muscles convert chemical energy provided by the rest of the body to allow movement.
Answer:
The second answer from the top, no the energy in the wave pushed the water particles from above the earthquake in the opposite direction.
Explanation:
I believe this is the correct answer. Hope you do well
Diffraction patterns are due to interference<span>. Diffraction is a phenomena which occurs when a wave encounters an obstacle. It is the bending of light around the corners if the obstacle.</span>
Answer:
Approximately 21 km.
Explanation:
Refer to the not-to-scale diagram attached. The circle is the cross-section of the sphere that goes through the center C. Draw a line that connects the top of the building (point B) and the camera on the robot (point D.) Consider: at how many points might the line intersects the outer rim of this circle? There are three possible cases:
- No intersection: There's nothing that blocks the camera's view of the top of the building.
- Two intersections: The planet blocks the camera's view of the top of the building.
- One intersection: The point at which the top of the building appears or disappears.
There's only one such line that goes through the top of the building and intersects the outer rim of the circle only once. That line is a tangent to this circle. In other words, it is perpendicular to the radius of the circle at the point A where it touches the circle.
The camera needs to be on this tangent line when the building starts to disappear. To find the length of the arc that the robot has travelled, start by finding the angle
which corresponds to this minor arc.
This angle comes can be split into two parts:
.
Also,
.
The radius of this circle is:
.
The lengths of segment DC, AC, BC can all be found:
In the two right triangles
and
, the value of
and
can be found using the inverse cosine function:


.
The length of the minor arc will be:
.
Question
Rutherford tracked the motion of tiny, positively charged particles shot through a thin sheet of gold foil. Some particles travelled in a straight line and some were deflected at different angles.
Which statement best describes what Rutherford concluded from the motion of the particles?
A) Some particles travelled through empty spaces between atoms and some particles were deflected by electrons.
B) Some particles travelled through empty parts of the atom and some particles were deflected by electrons.
C) Some particles travelled through empty spaces between atoms and some particles were deflected by small areas of high-density positive charge in atoms.
D) Some particles travelled through empty parts of the atom and some particles were deflected by small areas of high-density positive charge in atoms.
Answer:
The right answer is C)
Explanation:
In the experiment described above, a piece of gold foil was hit with alpha particles, which have a positive charge. Alpha particles <em>α</em> were used because, if the nucleus was positive, then it would deflect the positive particles. The principles of physics posit that electric charges of the same orientation repel.
So most as expected some of the alpha particles went right through meaning that the gold atoms comprised mostly empty space except the areas that were with a dense population of positive charges. This area became known as the "nucleus".
Due to the presence of the positive charges in the nucleus, some particles had their paths bent at large angles others were deflected backwards.
Cheers!