To solve this problem, we know that:
1 Albert = 88 meters
1 A = 88 m
The first thing we have to do is to square both sides of
the equation:
(1 A)^2 = (88 m)^2
1 A^2 = 7,744 m^2
<span>Since it is given that 1 acre = 4,050 m^2, so to reach
that value, 1st let us divide both sides by 7,744:</span>
1 A^2 / 7,744 = 7,744 m^2 / 7,744
(1 / 7,744) A^2 = 1 m^2
Then we multiply both sides by 4,050.
(4050 / 7744) A^2 = 4050 m^2
0.523 A^2 = 4050 m^2
<span>Therefore 1 acre is equivalent to about 0.52 square
alberts.</span>
Let car A's starting position be the origin, so that its position at time <em>t</em> is
A: <em>x</em> = (40 m/s) <em>t</em>
and car B has position at time <em>t</em> of
B: <em>x</em> = 100 m - (60 m/s) <em>t</em>
<em />
They meet when their positions are equal:
(40 m/s) <em>t</em> = 100 m - (60 m/s) <em>t</em>
(100 m/s) <em>t</em> = 100 m
<em>t</em> = (100 m) / (100 m/s) = 1 s
so the cars meet 1 second after they start moving.
They are 100 m apart when the difference in their positions is equal to 100 m:
(40 m/s) <em>t</em> - (100 m - (60 m/s) <em>t</em>) = 100 m
(subtract car B's position from car A's position because we take car A's direction to be positive)
(100 m/s) <em>t</em> = 200 m
<em>t</em> = (200 m) / (100 m/s) = 2 s
so the cars are 100 m apart after 2 seconds.
Postitive ions have more protons than electrons, because protons are positively charged. Electrons have a negative charge, so if there were less protons than electrons the job would be negative. If there were the same amount of both, then the positive and negative charges balance each other out, making a neutral charge.