Answer:
Option D: it's ability to lose electrons
Explanation:
Alkali metals are usually discovered in nature. They have highly reactivity at STP conditions (standard temperature and pressure conditions) and easily lose their outermost electron to form positive ions known that have a charge of +1.
Thus, what can determine the extent of reactivity of an alkali metal, is it's ability to lose electrons
Most reasonable answer:
Observations and experimentation
You need to find moles of the gas, so you would use the ideal gas law:
PV=nRT
Pressure
Volume
n=moles
R= gas constant
Tenperature in Kelvin
n= PV/RT
(1.00atm)(1.35L)/(.08206)(332K) = 0.050mol
Molar mass is grams per mole, so
(3.75g/.050mol) = 75g/mol
228 grams
start with mass of Cr multiply by molar mass of Cr mole to mole ratio between Cr and Cr2O3 times molar mass of Cr2O3
Answer:If we have [H+][OH-]= Kw = 1.0 x 10^-14
Then [H+]= Kw/ [OH-]= 1.0x 10^-14/ 1 x 10^-11 =1 x 10^-3 mol/L
And here is the solution - as you can see it is an acidic one :
pH = - log [H+]= - log 1 x 10^-3 = 3 < 7
Explanation: