The answer is that exact locations within either cannot be determined at any given moment in time.
An electron cloud be compared with a spinning airplane propeller in the manner that in both exact location within either cannot be determined at any given moment in time.
In both electron cloud as well as spinning airplane propeller, there is a probability of finding either but exact location can not be determined.
Answer:
a) 2.01 g
Explanation:
- Na₂CO₃ (s) + 2AgNO₃ (aq) → Ag₂CO₃ (s) + 2NaNO₃
First we <u>convert 0.0302 mol AgNO₃ to Na₂CO₃ moles</u>, in order to <em>calculate how many Na₂CO₃ moles reacted</em>:
- 0.0302 mol AgNO₃ *
= 0.0151 mol Na₂CO₃
So the remaining Na₂CO₃ moles are:
- 0.0340 - 0.0151 = 0.0189 moles Na₂CO₃
Finally we <u>convert Na₂CO₃ moles into grams</u>, using its <em>molar mass</em>:
- 0.0189 moles Na₂CO₃ * 106 g/mol = 2.003 g Na₂CO₃
The closest answer is option a).
Answer:
Energy lost is 7.63×10⁻²⁰J
Explanation:
Hello,
I think what the question is requesting is to calculate the energy difference when an excited electron drops from N = 15 to N = 5
E = hc/λ(1/n₂² - 1/n₁²)
n₁ = 15
n₂ = 5
hc/λ = 2.18×10⁻¹⁸J (according to the data)
E = 2.18×10⁻¹⁸ (1/n₂² - 1/n₁²)
E = 2.18×10⁻¹⁸ (1/15² - 1/5²)
E = 2.18×10⁻¹⁸ ×(-0.035)
E = -7.63×10⁻²⁰J
The energy lost is 7.63×10⁻²⁰J
Note : energy is lost / given off when the excited electron jumps from a higher energy level to a lower energy level
Answer:
В. No, because the mass of the reactants is less than the mass of the products.
Explanation:
Chemical equation:
NaBr + Cl₂ → 2NaCl + Br₂
The given equation is not balanced because number of moles of sodium and bromine atoms are less on reactant side while more on the product side.
There are one mole of sodium and one mole of bromine atom on left side of equation while on right side there are 2 moles of bromine and 2 moles of sodium atom are present. The number of moles of chlorine atoms are balanced.
Balanced chemical equation:
2NaBr + Cl₂ → 2NaCl + Br₂
Now equation is balanced. Number of moles of sodium , chlorine and bromine atoms are equal on both side.
Answer:
Initial temperature, T1 = 99.4 Kelvin
Explanation:
<u>Given the following data;</u>
- Initial volume, V1 = 65.8 Litres
- Final temperature, T2 = 200 Kelvin
- Final volume, V2 = 132.4 Litres
To find the initial temperature (T1), we would use Charles' law;
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles' law is given by the formula;


Making T1 as the subject formula, we have;

Substituting the values into the formula, we have;


<em>Initial temperature, T1 = 99.4 Kelvin</em>