Answer:
Δ L = 2.57 x 10⁻⁵ m
Explanation:
given,
cross sectional area = 1.6 m²
Mass of column = 26600 Kg
Elastic modulus, E = 5 x 10¹⁰ N/m²
height = 7.9 m
Weight of the column = 26600 x 9.8
= 260680 N
we know,
Young's modulus=
stress = 
= 
= 162925
strain = 
now,



Δ L = 2.57 x 10⁻⁵ m
The column is shortened by Δ L = 2.57 x 10⁻⁵ m
Answer:
v = 14.32 m/s
Explanation:
According to the principle of conservation of linear momentum, both the momentum and kinetic energy of the system are conserved. Since the two balls are in the same direction of motion before collision, then;
+
= (
+
) v
0.035 × 12 + 0.120 × 15 = (0.035 + 0.120) v
0.420 + 1.800 = (0.155) v
2.22 = 0.155 v
⇒ v = 
= 14.323
The velocity of the balls after collision is 14.32 m/s.
No, the building's size in comparison to the earth would have no change or change so increadibly miniscule, like if you were told to spin slowly and an and was placed on top of your head
Answer:
45.11 kmph and 12.530 m/s
Explanation:
Average speed = Total distance travelled / Total time taken
406/9 gives the answer in kilometers
And we convert it to m/s by multiplying it with 1000/3600
Answer:6m/s^2
Explanation:
Mass =3kg
Force=18N
Acceleration =force ➗ mass
Acceleration =18 ➗ 3
Acceleration =6
Acceleration =6m/s^2