The kinetic energy of an object is directly proportional to its mass, and to the square of its velocity.
I need help on this to I have to get the answer fast
<h2>
Kinetic energy just before hitting the floor is 324.57 J</h2>
Explanation:
Weight of volleyball player = 650 N
That is
Mass x Acceleration due to gravity = 650
Mass x 9.81 = 650
Mass = 66.26 kg
We also have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Final velocity, v = ?
Displacement, s = 0.5 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 0.5
v = 3.13 m/s
Velocity with which he lands on ground is 3.13 m/s
We have kinetic energy = 0.5 x Mass x Velocity²
Substituting
Kinetic energy = 0.5 x 66.26 x 3.13²
Kinetic energy = 324.57 J
Kinetic energy just before hitting the floor is 324.57 J
Answer:
Transverse waves are always characterized by particle motion being perpendicular to wave motion. A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction that the wave moves.
Explanation:
The movement of the medium is different. In the longitudinal wave, the medium moves left to right, while in thee transverse wave, the medium moves vertically up and down. Longitudinal waves have a compression and rarefaction, while the transverse wave has a crest and a trough. Longitudinal waves have a pressure variation, transverse waves don't have pressure variation. Longitudinal waves can be propagated in solids, liquids and gases, transverse waves can only be propagated in solids and on the surfaces of liquids. Longitudinal waves have a change in density throughout the medium, transverse waves don't.
The correct answer is b , the the liquid with heat and cool faster