1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
12

What drives people to explore

Physics
1 answer:
True [87]3 years ago
6 0

Answer:

curiousity is what drives people to explore

You might be interested in
In the most common isotope of Hydrogen the nucleus is made out of a single proton. When this Hydrogen atom is neutral, a single
FinnZ [79.3K]

Answer:

The ratio of electric force to the gravitational force is 2.27\times 10^{39}

Explanation:

It is given that,

Distance between electron and proton, r=4.53\ A=4.53\times 10^{-10}\ m

Electric force is given by :

F_e=k\dfrac{q_1q_2}{r^2}

Gravitational force is given by :

F_g=G\dfrac{m_1m_2}{r^2}

Where

m_1 is mass of electron, m_1=9.1\times 10^{-31}\ kg

m_2 is mass of proton, m_2=1.67\times 10^{-27}\ kg

q_1 is charge on electron, q_1=-1.6\times 10^{-19}\ kg

q_2 is charge on proton, q_2=1.6\times 10^{-19}\ kg

\dfrac{F_e}{F_g}=\dfrac{kq_1q_2}{Gm_1m_2}

\dfrac{F_e}{F_g}=\dfrac{9\times 10^9\times (1.6\times 10^{-19})^2}{6.67\times 10^{-11}\times 9.1\times 10^{-31}\times 1.67\times 10^{-27}}

\dfrac{F_e}{F_g}=2.27\times 10^{39}

So, the ratio of electric force to the gravitational force is 2.27\times 10^{39}. Hence, this is the required solution.

3 0
3 years ago
Calculate the Schwarzschild radius (in kilometers) for each of the following.1.) A 1 ×108MSun black hole in the center of a quas
Westkost [7]

Answer:

(I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

Explanation:

Given that,

Mass of black hole m= 1\times10^{8} M_{sun}

(I). We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Where, G = gravitational constant

M = mass

c = speed of light

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times1\times10^{8}\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=2.94\times10^{8}\ km

(II). Mass of block hole m= 6 M_{sun}

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times6\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=17.7\ km

(III). Mass of block hole m= mass of moon

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times7.35\times10^{22}}{(3\times10^{8})^2}

R_{g}=1.1\times10^{-7}\ km

(IV). Mass = 50 kg

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times50}{(3\times10^{8})^2}

R_{g}=7.4\times10^{-29}\ km

Hence, (I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

8 0
4 years ago
A hovering mosquito is hit by a raindrop that is 50 times as massive and falling at 8.4 m/s, a typical raindrop speed. How fast
kenny6666 [7]

The final velocity after the collision is 8.2 m/s

Explanation:

We can solve this problem by using the law of conservation of momentum: in fact, if we consider the system to be isolated (=no external unbalanced forces), the total momentum of the raindrop+mosquito must be conserved before and after the collision.

If the collision is perfectly inelastic, moreover, the raindrop and the mosquito stick together and travel at the same velocity v after the collision.

Mathematically:

p_i = p_f\\m_1 u_1 + m_2 u_2 = (m_1+m_2)v  

where:  

m_1 is the mass of the first mosquito

u_1 = 0 is the initial velocity of the mosquito

m_2 = 50 m_1 is the mass of the raindrop

u_2 = 8.4 m/s is the initial velocity of the raindrop

v is the final combined velocity of the raindrop+mosquito

Re-arranging the equation and substituting, we find:  

m_1 u_1 + 50 m_1 u_2 = (m_1 + 50 m_1) v\\50 m_1 u_2 = 51 m_1 v\\50 u_2 = 51 v\\v=\frac{50}{51}u_2 = \frac{50}{51}(8.4)=8.2 m/s

Learn more about momentum here:

brainly.com/question/7973509  

brainly.com/question/6573742  

brainly.com/question/2370982  

brainly.com/question/9484203  

#LearnwithBrainly

4 0
3 years ago
A car of mass 998 kilograms moving in the positive y–axis at a speed of 20 meters/second collides on ice with another car of mas
goldfiish [28.3K]
    <span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400

This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.

Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.

Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600

This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.

Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)

The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.

x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
3 0
3 years ago
Joshua was driving to a friend’s house to study. During his trip, he started on pavement. At one point, he hit an ice patch on t
Tems11 [23]

Answer:

b. Friction decreased when he went from pavement to ice and then increased two more times.

Explanation:

Frictional force depends on the normal force of the surface and a friction coefficient.

F_{f} = -\mu N

Since we're talking about the same car, the value of N will remain constant whereas μ will represent the change in the frictional coefficient of the surface. Now we consider the different surfaces, cars will slide in an icy road which means that the frictional coefficient is smaller than the pavement.

After Joshua returns to the pavement road, the resulting frictional force increases and will do so one more time when he reaches the gravel road. Gravel roads have greater frictional coefficients than pavement roads which means the frictional force will increase a second time.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A student uses an electronic force sensor to study how much force the student’s finger can apply to a specific location. The stu
    12·2 answers
  • What are the three things a chloroplast needs in order to complete photosynthesis?
    14·1 answer
  • You have a mixture of substances with diifferent sized molecules. How could you seperate them?
    12·2 answers
  • A surface weather map shows air circulation in a counterclockwise pattern. what does this represent? there isnt a picture btw
    9·2 answers
  • Question 1
    10·2 answers
  • Horizontal circular motion questions:
    8·1 answer
  • An automobile with 0.500 m radius tires travels 80,000 km before wearing them out. How many revolutions do the tires make, negle
    5·1 answer
  • An electron (restricted to one dimension) is trapped between two rigid walls 1.40 nm apart. The electron's energy is approximate
    11·1 answer
  • The low-frequency speaker of a stereo set produces 10.0 W of acoustical power. If the speaker projects sound uniformly in all di
    9·1 answer
  • PLEASE read this carefully.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!