Required value of initial speed of the bullet be ( 4M/m)√(gL).
Given parameters:
Mass of the bullet =m.
Mass of the bob of the pendulum = M.
speed of the bullet before collision = v
Speed of the bullet after collision = v/2.
Length of the pendulum stiff rod = L.
Let speed transmitted to the pendulum be u.
Using principle of conservation of momentum:
mv = Mu + mv/2
⇒ Mu = mv/2
⇒ u = (m/M)v/2
We know that: to make the bob over the top of the trajectory without falling backward in its circular path, required speed be = √(4gL). [ where g = acceleration due to gravity]
To be minimum initial speed the bullet must have in order for the pendulum bob to just barely swing through a complete vertical circle:
u = √(4gL)
⇒ (m/M)v/2 = √(4gL)
⇒ v =( 4M/m)√(gL).
Hence, minimum required speed of the bullet be ( 4M/m)√(gL).
Learn more about speed here:
brainly.com/question/28224010
#SPJ1
Answer:
a) 16m/s b) 192m
Explanation:
v1=32m/s a=-2m/s^2 t=8s v2=? d=??
a) I will use this equation v2= v1 + a*t
v2= 32m/s + -2m/s^2 * 8s
v2= 32m/s + -16m/s
v2= 16m/s
b) v2^2=v1^2 + 2ad
rearranging
v2^2-v1^2=2ad
v2^2-v1^2/2= a d
v2^2-v1^2/2a=d
16m/s^2 - 32m/s^2/ 2 x-2m/s^2 =d
d=192m
Answer:
The convex lens is shaped so that all light rays that enter it parallel to its axis cross one another at a single point on the opposite side of the lens.
Explanation:
Answer:

Explanation:
The acceleration experimented while taking a curve is the centripetal acceleration
. Since
, we have that: 
They take the same curve, so we have: 
Which means: 
And finally we obtain: 
Answer:
The tendency of an object to resist changes in its state of motion varies with mass. Mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.
Explanation: