The best use of an atomic model to explain the charge of the particles in Thomson's beams is:
<u>An atom's smaller negative particles are at a distance from the central positive particles, so the negative particles are easier to remove.</u>
<u>Explanation:</u>
In Thomson's model, an atom comprises of electrons that are surrounded by a group of positive particles to equal the electron's negative particles, like negatively charged “plums” that are surrounded by positively charged “pudding”.
Atoms are composed of a nucleus that consists of protons and neutrons . Electron was discovered by Sir J.J.Thomson. Atoms are neutral overall, therefore in Thomson’s ‘plum pudding model’:
-
atoms are spheres of positive charge
- electrons are dotted around inside
Thomson's conclusions made him to propose the Rutherford model of the atom where the atom had a concentrated nucleus of positive charge and also large mass.
Answer:8.3m/sec 30 sec,
Explanation:
A student practicing for a track meet, ran 250 m in 30 sec. a. What was her average speed? 250 m = 8.3 m/sec 30 sec.
Needed to be pointed out that mechanical advantage is when the distance traveled is traded for force applied
from the following options, the one that is considered a mechanical advantage is : C. a longer lever helps lift more weight
hope this helps
The instantaneous velocity of the object is its speed and direction at that instant.
Answer:
Option B.
Explanation:
Assuming the stick is in vertical position, its shadow depends on two factors: its length and the angle between the sun rays and the stick. When the angle is bigger, the lenght of the shadow increases, and vice versa. So, when the sun rays are parallel to the stick, the shadow may be small. Since they are nearly perpendicular to the Earth's surface at 12 o'clock, the shadow of the stick at that time should be minimal. It means that the measured shadow of 75 cm at 12:30 p.m. is almost impossible (Option B).