The answer is C 2800 kg m/s
the answer for this question is c
Molar mass of H₂ = 1.008 × 2 g/mol = 2.016 g/mol <span>
Molar mass of I₂ =
126.9 × 2 g/mol = 253.8 g/mol </span><span>
Molar mass of HI = (1.008 + 126.9) g/mol = 127.9 g/mol
H₂(g) + I₂(g) → 2HI </span><span>
Mole ratio H₂ : I₂ : HI = 1 : 1 : 2 </span><span>
Then the initial number of moles of H₂ = (3.35 g) / (2.016 g/mol) = 1.662 mol </span><span>
Initial number of moles of I₂ = (50.75 g) / (253.8 g/mol) = 0.2000 mol <
1.662 mol </span><span>
Hence, I₂ is the
limiting reactant (limiting reagent). </span><span>
Number of moles of I₂ reacted = 0.2000 mol </span><span>
Number of moles of HI reacted = (0.2000 mol) × 2 = 0.4000 mol
<span>Mass of HI reacted = (127.9 g/mol) × (0.4000 mol) = 51.16 g</span></span>
Answer:
Part(a): The final angular velocity is 
Part(b): The ratio of the rotational energies is
,showing the the energy of th system will decrease.
Explanation:
Part(a):
If '
' be the moment of inertia of an object and '
' be its angular velocity then the angular momentum '
' of the object can be written as

If '
' and '
' be the moment of inertia of the two cylinders and '
' and '
' be the initial angular velocity of the cylinders and '
' and '
' be their respective final angular velocity, then from conservation of angular momentum,

Given,
. From the above expression

Part(b):
Initial kinetic energy
and Final kinetic energy

Substituting the value of
,

The above expression shows that the ebergy of the system will decrease.
It is a scaler because it’s only fully describes by a magnitude and a numerical alone