Answer:
The angle between the emergent blue and red light is 
Explanation:
We have according to Snell's law

Since medium from which light enter's is air thus 
Thus for blue incident light we have

Similarly using the same procedure for red light we have

Thus the absolute value of angle between the refracted blue and red light is

Franklin had been waiting for an opportunity like this. He wanted to demonstrate the electrical nature of lightning, and to do so, he needed a thunderstorm.
He had his materials at the ready: a simple kite made with a large silk handkerchief, a hemp string, and a silk string. He also had a house key, a Leyden jar (a device that could store an electrical charge for later use), and a sharp length of wire. His son William assisted him.
Franklin had originally planned to conduct the experiment atop a Philadelphia church spire, according to his contemporary, British scientist Joseph Priestley (who, incidentally, is credited with discovering oxygen), but he changed his plans when he realized he could achieve the same goal by using a kite.
Answer:
a. Exactly the same as the magnitude of the charge of the proton.
Explanation:
The elementary charge (e) is the smallest electric charge that can exist in the universe. Any positive or negative electric charge can be expressed as a multiple of the elementary charge, since is the electric charge carried by a single proton or, equivalently, the magnitude of the electric charge carried by a single electron (-1e).
Hey there! :D
We want to find an answer choice that is reversible. If the physical change could have some way of being fixed, then it is a physical change. If it is a chemical change, the make-up is different and there is no way that it could change.
A cookie baking cannot be reversed. Cookies cannot go back to being cookie dough.
Paper burning cannot be reversed. Ashes and smoke cannot go back to being paper.
However, if your ice cream melts, you can refreeze it. Therefore, "3" is the best answer to the question.
I hope this helps!
~kaikers
Answer:
Addition of shells increases the distance of outer electrons from the nucleus.
Explanation:
Shielding effect is known as the attraction between the nucleus and an electron of any atom. In other words, it is the reduction in effective nuclear charge on an electron cloud.
Addition of electron shells results in the shielding of electron from nucleus. As the number of electron shells increases then farther will be the electrons placed from the nucleus and hence it will become easier to expel the electrons from outer shells with only little amount of ionization energy.
So, the amount of ionization energy require will be indirectly proportional to the shielding effect because more the shielding of electrons from the nucleus less will be the ionization energy require to expel the electrons.