Answer:
The magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Explanation:
Given;
radius of the wire, r = 0.45 m
current on the loop, I = 2.4 A
angle of inclination, θ = 36⁰
torque on the coil, τ = 1.5 N.m
The torque on the coil is given by;
τ = NIBAsinθ
where;
B is the magnetic field
Area of the loop is given by;
A = πr² = π(0.45)² = 0.636 m
τ = NIBAsinθ
1.5 = (1 x 2.4 x 0.636 x sin36)B
1.5 = 0.8972B
B = 1.5 / 0.8972
B = 1.67 T
Therefore, the magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Fly in a straight line unless an outside force changes its course because i tried it once in a baseball game that my mommy rekt me in.
D. potential energy, because there is a bunch of water pent up, essentially stationary, waiting to roll down the steep mountain from the peak, so to say. if the dam were to be removed it would become kinetic.
Answer:
6.58m
Explanation:
The kinetic energy = Workdone on the roller
Workdone = Force * distance
Given
KE = Workdone = 362J
Force = 55N
Required
Distance
Substitute into the formula;
Workdone = Force * distance
362 = 55d
d = 362/55
d = 6.58m
Hence the student must push at a distance of 6.58m