Answer:
- 1100 J heat flows out
Explanation:
dW = - 1600 J (as work is done on the gas)
dU = 500 J
dQ = ?
According to the first law of thermodynamics
dQ = dU + dW
dQ = 500 - 1600
dQ = - 1100 J
As heat is negative so it flows out.
Answer:
C the Law of Superposition
Explanation:
Basically the law of Superposition is applied in this regard. The law states that "the oldest layer is on the bottom and the youngest layer is on top".
When we find fossils at a particular depth we can relatively date a rock based on the strata we find them. A fossil in place in bottom beds will be older than the one in the topmost layer. Fossils also succeed one another in a definite pattern according to the principle of fossil and fauna succession.
1. a. longitudinal waves.
There are two types of waves:
- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave
- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.
So, these types of waves are called longitudinal waves.
2. d. a medium
There are two types of waves:
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium
3. a. AM/FM radio
Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.
Car X traveled 3d distance in t time. Car Y traveled 2d distance in t time. Therefore, the speed of car X, is 3d/t, the speed of car Y, is 2d/t. Since speed is the distance taken in a given time.
In figure-2, they are at the same place, we are asked to find car Y's position when car X is at line-A. We can calculate the time car X needs to travel to there. Let's say that car X reaches line-A in t' time.

Okay, it takes t time for car X to reach line-A. Let's see how far does car Y goes.

We found that car Y travels 2d distance. So, when car X reaches line-A, car Y is just a d distance behind car X.
Answer: FR=2.330kN
Explanation:
Write down x and y components.
Fx= FSin30°
Fy= FCos30°
Choose the forces acting up and right as positive.
∑(FR) =∑(Fx )
(FR) x= 5-Fsin30°= 5-0.5F
(FR) y= Fcos30°-4= 0.8660-F
Use Pythagoras theorem
F2R= √F2-11.93F+41
Differentiate both sides
2FRdFR/dF= 2F- 11.93
Set dFR/dF to 0
2F= 11.93
F= 5.964kN
Substitute value back into FR
FR= √F2(F square) - 11.93F + 41
FR=√(5.964)(5.964)-11.93(5.964)+41
FR= 2.330kN
The minimum force is 2.330kN