Reason1: electrons on farther layers become free easyer
2nd reason: volume of atoms grows (from Helium to Xeon) so instead of boyle-mariot law equation (PV=vRT) is more accurate to use van der walls equations that adds to the boyle-mariot equation the volume occupied by the atoms of the gas to the volume of the space between the atoms P(Vm-b)=vRT
Answer:
T2 = 550K
Explanation:
From Charles law;
V1/T1 = V2/T2
Where;
V1 is initial volume
V2 is final volume
T1 is initial temperature
T2 is final temperature
We are given;
V1 = 20 mL
V2 = 55 mL
T1 = 200 K
Thus from V1/T1 = V2/T2, making T2 the subject;
T2 = (V2 × T1)/V1
T2 = (55 × 200)/20
T2 = 550K
<u>Answer:</u> 6.57 L of solution can be made.
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
Given values:
Molarity of LiBr = 3.5 M
Moles of LiBr = 23 moles
Putting values in equation 1, we get:

Hence, 6.57 L of solution can be made.
Rutherford used gold for his scattering experiment because gold is the most malleable metal and he wanted the thinnest layer as possible. The goldsheet used was around 1000 atoms thick. Therefore, Rutherford selected a Gold foil in his alpha scatttering experiment.