212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
Option A.
Explanation:
Similar to Avagadro's law, there is another law termed as dilution law. As the product of volume and normality of the reactant is equal to the product of volume and normality of the product from the Avagadro's law. In dilution law, it will be as product of volume and concentration of the solute of the reactant is equal to the product of volume and concentration of solution.

So, as per the given question C1 = 5.45 M of lead nitrate and V1 has to be found. While C2 is 1.41 M of lead nitrate and V2 is 820.7 ml.
Then, 

So nearly 212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
hshdhdhdhdbebdbduzhshsjuuu66s8s8d
Explanation:
bdhdhdfhshdudhdhd7x6x8xjdjdjdjdjdid8dijdjdjdhdhdj
The answer is A. Ne. You can separate the elements in the other three choices through chemical changes (dissociation, ionization, electrolysis, etc.), but in order to separate the components of Ne, you would need a nuclear reaction (to decompose the nucleus) or a physical change (to strip the nucleus of its electron cloud).
Answer:
Protonated form: 96.87%
Unprotonated form: 3.13%
Explanation:
To find the percentage of protoned and unprotoned forms of salicylic acid we must use Henderson-Hasselbalch equation:
pH = pKa + log [A⁻] / [HA]
<em>Where pKa of salicylic acid is 3.49; [A⁻] is the unprotonated form and [HA]:</em>
<em />
2.0 = 3.49 + log [A⁻] / [HA]
0.03236 = [A⁻] / [HA] <em>(1)</em>
And as:
[A⁻] + [HA] = 100% <em>(2)</em>
<em></em>
Replacing (2) in (1):
0.03236 = 100 - [HA] / [HA]
0.03236 [HA] = 100 - [HA]
1.03236[HA] = 100
<h3>[HA] = 96.87%</h3>
And [A⁻]:
[A⁻] = 100 - 96.87
<h3>[A⁻] = 3.13%</h3>
<em></em>
<span>on or in the ocean floor :)</span>