Answer:
300 N/m
Explanation:
given,
Load attached to the spring, W = 54 N
length of stretch of the spring, x = 0.15 m
spring constant= ?
Force applied on the spring is calculated by the equation
F = k x
where k is the spring constant
x is the displacement of the spring due to applied load
now,
54 = k × 0.15


hence, the spring constant is equal to 300 N/m
Gay-Lussac's Law states
P1 / T1 = P2 / T2
So the answer is b
Answer:
11.27N
Explanation:
Given parameters:
Mass of the book = 1.15kg
Unknown:
Magnitude of the normal force = ?
Solution:
The normal force is the vertical force exerted by a body on an object.
It can be described as the weight of an object.
Normal force = mass x acceleration due to gravity
Normal force = 1.15 x 9.8 = 11.27N
Answer:
The workdone is
Explanation:
From the question we are told that
The potential difference is 
Generally the charge on
is 
Generally the workdone is mathematically represented as

=>
=>
Answer:
- Fx = -9.15 N
- Fy = 1.72 N
- F∠γ ≈ 9.31∠-10.6°
Explanation:
You apparently want the sum of forces ...
F = 8.80∠-56° +7.00∠52.8°
Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...
f∠α = (-f·cos(α), -f·sin(α))
This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.
= -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))
≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)
≈ (-9.15309, 1.71982)
The resultant component forces are ...
Then the magnitude and direction of the resultant are
F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)
F∠γ ≈ 9.31∠-10.6°