Number of electron in O = 8
So, in O2 it would be: 8 * 2 = 16
So, your final answer is 16
Hope this helps!
Answer:

Explanation:
We are asked to find the specific heat capacity of a liquid. We are given the heat added, the mass, and the change in temperature, so we will use the following formula.

The heat added (q) is 47.1 Joules. The mass (m) of the liquid is 14.0 grams. The specific heat (c) is unknown. The change in temperature (ΔT) is 1.80 °C.
- q= 47.1 J
- m= 14.0 g
- ΔT= 1.80 °C
Substitute these values into the formula.

Multiply the 2 numbers in parentheses on the right side of the equation.


We are solving for the heat capacity of the liquid, so we must isolate the variable c. It is being multiplied by 25.2 grams * degrees Celsius. The inverse operation of multiplication is division, so we divide both sides of the equation by (25.2 g * °C).



The original measurements of heat, mass, and temperature all have 3 significant figures, so our answer must have the same. For the number we found that is the hundredth place. The 9 in the thousandth place to the right tells us to round the 6 up to a 7.

The heat capacity of the liquid is approximately 1.87 J/g°C.
The question is incomplete, the complete question is:
Write the net ionic equation for the below chemical reaction:
(c): 
<u>Answer:</u> The net ionic equation is 
<u>Explanation:</u>
Net ionic equation is defined as the equations in which spectator ions are not included.
Spectator ions are the ones that are present equally on the reactant and product sides. They do not participate in the reaction.
(c):
The balanced molecular equation is:

The complete ionic equation follows:

As ammonium and chloride ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:

Answer:
28.01g
Explanation:
Given the weight of one mole of Cabon as 12.01g and that of oxygen as 16.00g.
The molecular weight of a compound can be gotten by adding the molar weights of the elements that constitutes the compound .
The molecular weight of the compound CO is therefore
equal to the sum of the weight of both elements.
That’s = 12.01g + 16.00g
= 28.01g
Therefore, the molecular weight of CO is 28.01g
Answer:
the 3rd one (0.01 cm the one selected already)
Explanation:
copper wire isn't excessively big, and it wraps around the pencil because its malleable. I think that the most accurate would be 0.01 cm