Answer:
Explanation:
1. FALL PROTECTION-GENERAL REQUIREMENTS (29 CFR 1926.501) 6,010 VIOLATIONS
2. HAZARD COMMUNICATION (29 CFR 1910.1200). 3,671
3. SCAFFOLDING (29 CFR 1926.451). 2,813
Answer:
(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%
Explanation:
Using the formula that relate heat and work from the thermodynamic theory as:
solving to Q_out we get:
this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us:
where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get:
Well a basic explanation is that some elements have enough electrons to be considered stable. These elements do not need to react with other elements to gain more electrons. Reactive elements are no where near stable; they respond with other elements in order to become stable. The more unstable, the harsher the reaction is.
To perform an experiment to determine the force constant of a spring, you will need a stand with a boss and clamp, a spiral spring, a meter rule and different weights.
The setup is arranged as shown in the image attached. The natural length of the spring is first recorded. Different weights are added to the spring one after the other and the extension is recorded.
The weight is now plotted on the vertical axis and the extension is plotted on the horizontal axis. The slope of the graph is the force constant of the spring.
Learn more: brainly.com/question/10991960
KE = 1/2mv^2
KE = 1/2 (5kg)(3m/s)
KE = 22.5 J