Answer:
3.192 m/s
Explanation:
t = Time taken = 0.900 seconds
u = Initial velocity
v = Final velocity
s = Displacement = 1.1 meters
a = Acceleration due to gravity = 9.81 m/s²

Velocity of the elevator when it snapped is 3.192 m/s
The answer is: (2) : <span>↘
___________________________________</span>
In my opinion, calling exercise "work" wouldn't be a good way of describing it, I don't think people would exercise if its called work
Answer:
400 kilogram
Explanation:
Force exerted is directly proportional to the mass of an object.
F=ma where m is mass and a is acceleration. Taking uniform acceleration on all objects then the larger the mass the higher the force and vice versa. Theredore, among the masses given, 400 kilograms is the largest hence it exerts the largest force at the bottom
Answer:
distance = 6.1022 x10^16[m]
Explanation:
To solve this problem we must use the formula of the average speed which relates distance to time, so we have
v = distance / time
where:
v = velocity = 3 x 10^8 [m/s]
distance = x [meters]
time = 6.45 [light years]
Now we have to convert from light-years to seconds in order to get the distance in meters.
![t = 6.45 [light-years]*365[\frac{days}{1light-year}]*24[\frac{hr}{1day}] *60[\frac{min}{1hr}]*60[\frac{seg}{1min} ] =203407200 [s]](https://tex.z-dn.net/?f=t%20%3D%206.45%20%5Blight-years%5D%2A365%5B%5Cfrac%7Bdays%7D%7B1light-year%7D%5D%2A24%5B%5Cfrac%7Bhr%7D%7B1day%7D%5D%20%2A60%5B%5Cfrac%7Bmin%7D%7B1hr%7D%5D%2A60%5B%5Cfrac%7Bseg%7D%7B1min%7D%20%5D%20%3D203407200%20%5Bs%5D)
Now using the formula:
distance = v * time
distance = (3*10^8)*203407200
distance = 6.1022 x10^16[m]