Answer:
a = 52s²
Explanation:
<u>How to find acceleration</u>
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
<u>Solve</u>
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
Answer:
6.93 km/h
Explanation:
To calculate her average speed, we need the "speed" formula, which is:
average speed = distance / time
You plug in your numbers and it will give you the answer.
Speed = 4.5km/0.65hr
= 6.923 km/h
Answer:
1.03 m/s
Explanation:
I'm too lazy to write the explanation down but my teacher graded this and it was right
Answer: 539.4 N
Explanation:
Let's begin by explaining that Coulomb's Law establishes the following:
"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them"
What is written above is expressed mathematically as follows:
(1)
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Then:
(2)
Isolating
and
:
(3)
Now, if we keep the same charges but we decrease the distance to
, (1) is rewritten as:
(4)
Then, the new electrostatic force will be:
(5) As we can see, the electrostatic force is increased when we decrease the distance between the charges.
Answer:
60 cm
Explanation:
We are given;
- Focal length of a concave mirror as 30.0 cm
- Object distance is 15.0 cm
We are required to determine the radius of curvature.
We need to know that the radius of a curvature is the radius of a circle from which the curved mirror is part.
We also need to know that the radius of curvature is twice the focal length of a curved mirror.
Therefore;
Radius of curvature = 2 × Focal length
Therefore;
Radius of curvature = 2 × 30 cm
= 60 cm