Answer:
The ratio of electric force to the gravitational force is 
Explanation:
It is given that,
Distance between electron and proton, 
Electric force is given by :

Gravitational force is given by :

Where
is mass of electron, 
is mass of proton, 
is charge on electron, 
is charge on proton, 



So, the ratio of electric force to the gravitational force is
. Hence, this is the required solution.
Answer:
This is because using a long handled requires less force to the center of gravity and makes it easier to rotate than a short handled spanner
<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>-</u><u>1</u><u>:</u><u>-</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>2</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>3</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>4</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>5</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>6</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>7</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>8</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>9</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>10</u>

To get the solution you must need to draw a force triangle. Attach the head of the 60N north force arrow with the tail of the 60N east force arrow. The subsequent is the arrow connecting he tail and head of the two arrows.
You get a right angled triangle, and the resultant is (60^2 + 60^2) ^0.5 = 84.85 N or 85 N northeast.
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC